首页> 外文OA文献 >Dynamics in chemotaxis models of parabolic-elliptic type on bounded domain with time and space dependent logistic sources
【2h】

Dynamics in chemotaxis models of parabolic-elliptic type on bounded domain with time and space dependent logistic sources

机译:有界条件下抛物椭圆型趋化模型的动力学   域与时间和空间相关的物流来源

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper considers the dynamics of the following chemotaxis system $$\begin{cases} u_t=\Delta u-\chi\nabla (u\cdot \nablav)+u\left(a_0(t,x)-a_1(t,x)u-a_2(t,x)\int_{\Omega}u\right),\quad x\in \Omega\cr0=\Delta v+ u-v,\quad x\in \Omega \quad \cr \frac{\partial u}{\partialn}=\frac{\partial v}{\partial n}=0,\quad x\in\partial\Omega, \end{cases} $$where $\Omega \subset \mathbb{R}^n(n\geq 1)$ is a bounded domain with smoothboundary $\partial\Omega$ and $a_i(t,x)$ ($i=0,1,2$) are locally H\"oldercontinuous in $t\in\mathbb{R}$ uniformly with respect to $x\in\bar{\Omega}$ andcontinuous in $x\in\bar{\Omega}$. We first prove the local existence anduniqueness of classical solutions $(u(x,t;t_0,u_0),v(x,t;t_0,u_0))$ with$u(x,t_0;t_0,u_0)=u_0(x)$ for various initial functions $u_0(x)$. Next, undersome conditions on the coefficients $a_1(t,x)$, $a_2(t,x)$, $\chi$ and $n$, weprove the global existence and boundedness of classical solutions$(u(x,t;t_0,u_0),v(x,t;t_0,u_0))$ with given nonnegative initial function$u(x,t_0;t_0,u_0)=u_0(x)$. Then, under the same conditions for the globalexistence, we show that the system has an entire positive classical solution$(u^*(x,t),v^*(x,t))$. Moreover, if $a_i(t,x)$ $(i=0,1,2)$ are periodic in $t$with period $T$ or are independent of $t$, then the system has a time periodicpositive solution $(u^*(x,t),v^*(x,t))$ with periodic $T$ or a steady statepositive solution $(u^*(x),v^*(x))$. If $a_i(t,x)$ $(i=0,1,2)$ are independentof $x$ , then the system has a spatially homogeneous entire positive solution$(u^*(t),v^*(t))$. Finally, under some further assumptions, we prove that thesystem has a unique entire positive solution $(u^*(x,t),v^*(x,t))$ which isglobally stable . Moreover, if $a_i(t,x)$ $(i=0,1,2)$ are periodic or almostperiodic in $t$, then $(u^*(x,t),v^*(x,t))$ is also periodic or almost periodicin $t$.
机译:本文考虑以下趋化系统的动力学$$ \ begin {cases} u_t = \ Delta u- \ chi \ nabla(u \ cdot \ nablav)+ u \ left(a_0(t,x)-a_1(t, x)u-a_2(t,x)\ int _ {\ Omega} u \ right),\ quad x \ in \ Omega \ cr0 = \ Delta v + uv,\ quad x \ in \ Omega \ quad \ cr \ frac { \ partial u} {\ partialn} = \ frac {\ partial v} {\ partial n} = 0,\ quad x \ in \ partial \ Omega,\ end {cases} $$其中$ \ Omega \ subset \ mathbb { R} ^ n(n \ geq 1)$是一个有界边界的域,其中$$ partial \ Omega $和$ a_i(t,x)$($ i = 0,1,2 $)在本地是H \“ oldercontinuous in $ t \ in \ mathbb {R} $相对于$ x \ in \ bar {\ Omega} $是一致的,而在$ x \ in \ bar {\ Omega} $中是连续的我们首先证明经典解$的局部存在性和唯一性(u(x,t; t_0,u_0),v(x,t; t_0,u_0))$和$ u(x,t_0; t_0,u_0)= u_0(x)$用于各种初始函数$ u_0(x接下来,在系数$ a_1(t,x)$,$ a_2(t,x)$,$ \ chi $和$ n $的某些条件下,我们证明了经典解的全局存在性和有界性$(u( x,t; t_0,u_0),v(x,t; t_0,u_0))$具有给定的非负初始化ial函数$ u(x,t_0; t_0,u_0)= u_0(x)$。然后,在全局存在的相同条件下,我们证明系统具有完整的正经典解$(u ^ *(x,t),v ^ *(x,t))$。此外,如果$ a_i(t,x)$ $(i = 0,1,2)$在$ t $中具有周期$ T $是周期性的或独立于$ t $,则系统具有时间周期正解$ (u ^ *(x,t),v ^ *(x,t))$具有周期$ T $或稳态正解$(u ^ *(x),v ^ *(x))$。如果$ a_i(t,x)$ $(i = 0,1,2)$独立于$ x $,则系统具有空间均匀的整体正解$(u ^ *(t),v ^ *(t ))$。最后,在进一步的假设下,我们证明该系统具有唯一的整体正解$(u ^ *(x,t),v ^ *(x,t))$是全局稳定的。此外,如果$ a_i(t,x)$ $(i = 0,1,2)$在$ t $中是周期性的或几乎周期性的,则$(u ^ *(x,t),v ^ *(x,t ))$也是周期性的或几乎是周期性的$ t $。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号